The help document of quantum compiler

Qsoftware Team in ISCAS

1 Introduction

This is a brief introduction to our quantum compiler, a part of quantum soft-
ware toolkit of Institute of Software, Chinese Academy of Science. The main
function of this tool is compiling the high-level source language in to a low-
level intermediate representation (IR). The high-level language, named is@, is
based on [1] and similar to qWhile [2], besides we add some new features such
as recursion and local variables. The IR is similar to Rigetti’s Quil [3], but we
make some moderate changes to enable recursion stacks for recursion and local
variables. As we have not connected it to a real quantum hardware device, we
write a simulator to execute the current IR instructions. Further applying the
IR (and modifying it if necessary) to hardware like superconducting or ion-trap
will be a following step.

As the compiler in a rather raw version, if you find any bugs, please feel
free to inform us and we will be very grateful. We also appreciate any kind
suggestions. :)

2 Grammar

In [1], the high-level language supports several quantum instructions: initial-
ization, unitary operation, measurement. Classical control like if-statement and
loop-statement is also involved. To make the language more portable to users
and more feasible to existing quantum architectures, we permit explicitly decla-
ration of both classical and quantum variables in the source language. This in-
dicates that in the IR both quantum registers and classical registers are needed,
as Quil does.

2.1 Structure

A program written in our source language usually composes of three parts: gate
definition, global variable definition and procedure definition. For readability
and convenience, we require these three parts in strict order for the moment,

that is:

Gate Definition
Global Variable Definition

Procedure Definition

And they can not overlap with each other. Only when previous part is finished
could the users write the next part.

2.2 Gate Definition

We permit the users to define their own desired unitary operators at the very
beginning of programs. Note that some basic gates are automatically defined
and need no definition by users: H,T,X,Y,Z,CX(CNOT),CZ. They are reserved
words and cannot be used as user-defined gate names, variable names or proce-
dure names. Another reserve word is M, which acts as the projection measure-
ment operator.

To define a new gate the user should input a complex matrix and name the
gate like below:

Defgate Ul =[c1 1,12, , Cln;
C21,C22, " ,C2n;
Cn,1,Cn,2, " acn,n];

where U1 is the gate name and n must be a power of 2. ¢; ; is a complex number,
such as 0 or —0.5 4 0.55.

2.3 Global Variable Definition

There are two types of variables are supported currently: int and gbit. Define
a new int or gbit is like:

nt a;
qbit b;

By the way, the user can define multiple variable of same type in one clause:
qbit q0,q1,42, q3;
We also allow definition of variable arrays now, like:

qbit q[3];

2.4 Procedure Definition

For flexibility, we permit the user to define custom procedures which can recur-
sively call each other. But a main procedure must exist and can not be called
by other procedures:

procedure A() {
PROCEDURE BODY_A
}

procedure main() {
PROCEDUREBODY _MAIN
}

A is a proc name. PROCEDURE_BODY_A and PROCEDURE_BODY_MAIN
can contain five kinds of statements, which will be introduced in the following.

2.5 Statement

the permitted statements include: while statement, if statement, initialization,
assignment statement, procedure call statement. For classical control, the guard
in while and if statement can only contains classical variables. Initialization is
used to reset a quantum variable. Assignment statements include assignment
of arithmetic value, unitary operation and measurement operation.

2.5.1 while statement

while statement provides the loop structure, it has the form:

while (GUARD) do
LOOPBODY
od

Currently the GUARD only permits the comparison of two expressions com-
posed of integers and int variables. LOOPBODY has no restrictions, with all
five statements permitted. Note that brackets are necessary for the GUARD.
See an example below:

while (x<2) do
x =x + 1;
od

2.5.2 if statement

Similar to while statement, the structure is below:

if (GUARD) then
IFBODY
fi

or

if (GUARD) then
IFBODY_1
else
IFBODY_2
fi

in while and if statements, 'do’,’od’,’if’,’fi’ are reserved words to indicate the
scope of such statements.
2.5.3 initialization

Initialization statement are used to reset a qubit to state |0). See an example
below:

q0 = [0>;
ql = [0>;

where ¢0, gl are gbit variables. The structure for this statement is fixed, and
reset a qubit to state |1) is not permitted.

2.5.4 assignment statement

There are three types of assignment. The first type is assigning expression value
to a int variable. For example:

a=a+ 2;
The second type is assigning measurement outcome of a qubit to a int variable:
a =M [q];

where q must be a ¢bit variable and a must be a int variable. The third type is
unitary operation:

H <q>;
CX <q0,ql>;
uGate <q0,ql,q2>;

H is Harmard gate and CX is controll-NOT gate. The common basic gates
include H, XY, Z, T, S,CX(CNOT), CZ. Here uGate is a user-defined gate, it
needs to be defined in the gate definition stage. Note that uGate must be
8 x 8-dimension unitary or the compiler will report error message.

2.5.5 procedure call statement
This statement has one line:
A();

where A is name of a procedure. The parameters are permitted.

A(paral ,para2 ,... ,paraM);
For example:

procedure A(int m, int b[], gbit q)

3 An Quil-like IR

For demonstration, we currently adopt an IR similar to Rigetti’s Quil. The
major difference lays the type of classical registers. Our IR permits an stack
besides with static memory. We use registers C[0], C[1],... to denote static
memory, and use registers s[0], s[1], ... each of these registers could store a 32-
bit signed integer. Such approach make it convenient to separate the dynamic
and static memory consumption and relatively more readable to programmers.
Though whether Quil or our IR, it cannot be directly applied to a real hardware

devicel.

Example 3.1 (quantum-while) See below a program with a while loop:

gbit q,p;
int T,y;

procedure main() {

q9 = |0>;

p = |0>;

z = 0;

while (z == 0) do
H<p>;
CNOT <p, q>;
x = Mfp];

od

y =M/p];

print x;

print y;

The compiling results:

__main :
MOV REGS 0
MOV SPEC1 2
MOV SPEC2 2
Measure q[0] ¢ [SPEC1]
JUMP-IF @IF0 ¢ [SPEC1]==0

n fact, there is an instruction set called QPU-executable Quil for Rigetti’s current quan-
tum devices, but in this doc we discuss the original Quil

X q[0]

LABEL @QIF0

Measure q[1] c¢[SPEC1]
JUMP-IF @IF1 ¢ [SPEC1]==0
X q[1]

LABEL @IF1

MOV c[0] 0

LABEL @LOOPGUARDO

MOV SPEC3 ¢ [0]

MOV SPEC4 0

JUMP-UNLESS @LOOPENDO SPEC3==SPEC/

Hq[1]

CNOT q[1] q[0]
Measure q[1] c[0]
JUMP @LOOPGUARDO
LABEL @LOOPENDO
Measure q[1] c[1]
PRINT ¢[0]

PRINT ¢ [1]

Example 3.2 (Grover’s fixed-point quantum search[4]) initial state |s),
target state |t), where (s|ty = 0. To search |t), we use following three gates

U, Rs, R;, which satisfies:

U =(1—€) <1
Rs=1—-[1- exp(ig

Ry =1 —[1—cap(iz)]le)(t

define Uy, as following:
e when m =0, U,, =U;
e Vm >0,Up i1 = UnRUNRU,,.

it can be proved by induction:

Ym >0, |[(t|Un]s)]]? =1—¢€"

program code:

Defgate Rs =[0.5+0.86602545,0,0,0;
0,1,0,0;
0,0,1,0;
0,0,0,1];
Defgate Rs2 =[0.5—0.86602545,0,0,0;
0,1,0,0;

0,0,1,0;
0,0,0,1];

Defgate Rt =

Defgate Rt2

qgbit p,q,r;
gbit t[5];
int a,T,y;

procedure Al(int a) {
if (a==0) then
H<p>;
H<g>;
fi
if (a>0) then
a =a— 1;
Al(a);
Ri<p, q¢>;
Bi(a);
Rs <p,q>;
Al(a);
a = a+1;
i
}

procedure Bl(int a) {
if (a==0) then
H<p>;
H<qg>;
fi
if (a>0) then

Al(a);
Rt2<p, q¢>;
Bi(a);
a =a + 1;

fi

}
procedure main() {
a = 2;
Al(a);
x =M [p];
y =M [q];
print x;
print y;
}
the compiling result (omitted lines represented by ”...7):

LABEL @PROC.A1
MOV SPEC3 REGS
SUB SPEC3 2
MOV SPECS s [SPECS]
MOV SPECS ¢ [SPECS]
MOV SPECY 0
JUMP-UNLESS @IF(0 SPECS==SPEC/
H q[0]
Hq[1]

MOV ¢ [SPEC4] ¢ [SPEC3]

ADD ¢ [SPEC)] 1

LABEL Q@IF1

SUB REGS 1

JUMP-IF @CALL_END_A10 s [REGS]==0

JUMP-IF @CALL_END_A11 s[REGS]==1

JUMP-IF @CALL_END_A12 s [REGS]==2

JUMP-IF @CALL_END_A13 s [REGS]==3
LABEL @PROC.B1

MOV SPECS REGS

SUB SPEC3 2

MOV SPECS s [SPECS]

MOV SPECS ¢ [SPECS]

MOV SPECY 0

JUMP-UNLESS @IF2 SPEC3==SPECY

Hq[0]

Hql1]

LABEL QIF?2

LABEL Q@IF3

SUB REGS 1

JUMP-IF @CALL_END_B10 s [REGS]==0

JUMP-IF @QCALL_END_B11 s[REGS]==1

JUMP-IF @QCALL_END_B12 s[REGS]==2
__main :

MOV REGS 0

MOV SPECT 3

MOV SPEC2 8

MOV c[0] 2

MOV SPEC3 REGS

MOV s [SPEC3] 0

ADD REGS 1

MOV s [REGS] 8

ADD REGS 1

JUMP @PROC_A1

LABEL @CALL_END_A13

SUB REGS 1

Measure q[0] c[1]

Measure q[1] c[2]

PRINT ¢[1]

PRINT ¢ [2]

4 Discussion

As our compiler might adjust the target IR, we expect to apply our compiler on
real classic-quantum hybrid systems in the future. And the optimization of com-
pilers, which plays a pivotal role in classical computer science, has tremendous
potential in quantum computing. We will keep on updating the compiler.

References

[1] M. S. Ying, Foundations of Quantum Programming, Morgan-Kaufmann,
2016.

[2] Liu, Shusen, Wang, Xin, Zhou, Li, et al. Q|ST): A Quantum Programming
Environment[J]. Scientia Sinica, 2017.

[3] Smith R S, Curtis M J, Zeng W, et al. A Practical Quantum Instruction
Set Architecture.[]J]. arXiv: Quantum Physics, 2016.

[4] Grover L K. Fixed-point quantum search.[J]. Physical Review Letters, 2005,
95(15): 150501.Grover L K. Fixed-point quantum search.[J]. Physical Re-
view Letters, 2005, 95(15): 150501.

